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Abstract. The paper presents an end-to-end approach that leverages
images for estimating an ordered list of 3D key-points. Most of the
existing methods either use point clouds or multiple RGB/depth images
to estimate 3D key-points, whereas the proposed approach requires only a
single-view RGB image. It is based on three steps: extracting latent codes,
computing pixel-wise features, and estimating 3D key-points. It also
computes a confidence score of every key-point that enables it to predict
a different number of key-points based on an object’s shape. Therefore,
unlike existing approaches, the network can be trained to address several
categories at once. For evaluation, we first estimate 3D key-points for two
views of an object and then use them for finding a relative pose between
the views. The results show that the average angular distance error of
our approach (6.39◦) is 8.01◦ lower than that of KP-Net (14.40◦) [1].
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1 Introduction

Finding objects’ position and pose in images is a necessary step for solving
higher level tasks such as object search, manipulation, navigation in cluttered
environments, path planning, and human-robot interaction. Recent research
reveals that estimating object location and pose can be improved significantly
with the help of 3D key-points. It is due to the fact that they provide information
about Points of Interest (PoI) and are invariant to transformation i.e., rotations,
scale, etc. [1–6]. Moreover, they also contain semantic information, which is
helpful while reasoning on correspondences between points in two shapes [3, 7, 8].

Most of the recent studies use 3D key-points for various human related
applications including joint detection, motion capturing, pose estimation, etc.,
which deal with a single category (human) and a fixed number of key-points
[9–17]. On the other hand, key-points are also used in applications related to
rigid objects (i.e. car, chair, etc.), where an object’s structure and the number of
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Fig. 1: Comparison with the other paradigms. Some existing methods use point
clouds (top) or multiple images representing different views of an object (middle)
as inputs and compute 2D/3D features for key-points estimation. In comparison,
the proposed approach considers a single-view RGB image, extracts object 2D
features, and use them for estimating 3D key-points (bottom).

key-points may vary depending on the category. To simplify the problem, the
existing approaches train their network separately for every category for a fixed
number of key-points. In the literature, most of the works including [7, 18–20]
compute 3D key-points from 3D point clouds. On the other hand, a method
proposed in [1] uses RGB images. However, it estimates 3D key-points in the form
of 2D pixels and associated depth values. In comparison, we present an approach
that uses a single-view RGB image and estimates an ordered list of key-points in
3D space. An overview of our approach is shown in Fig. 1, highlighting the key
difference with the existing approaches. Our main contributions are as follows;

– The proposed approach estimates key-points from a single-view RGB image.
– Unlike the existing approaches, the proposed approach estimates the confi-

dence score for every key-point that allows it to predict the different number
of key-points based on the object’s shape.

– The estimated key-points provide order-wise semantic information that is
independent of the object’s view.

The remainder of the paper is organized as follows: Section 2 presents a
literature review, Section 3 describes the proposed system, and Section 4 discusses
the experiments we performed and compares the results with state-of-the-art
(SOTA) techniques. Finally, conclusions are summarised in Section 5.

2 Related work

Key-points provide an object’s structural information, which can be utilized
in geometric reasoning. The popularity stems from the fact that they require
minimum processing resources and are easy to handle in comparison to complete
3D point clouds of an object or 2D pixels of an image. Moreover, in some cases,
they also contain semantic information by ensuring their unique order.
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In literature, most of the approaches use point clouds for estimating 3D
key-points. Adamczyk et al. present an evolutionary algorithm for the selection
of visual key-points from unordered sets to address the classification problem [21].
An approach that estimates category-specific 3D key-points in an unsupervised
way is presented in [22]. It considers linear symmetric shapes and produces order-
wise correspondences with consistent semantics. Jakab et al. [23] use key-points
for aligning two shapes. Their network takes two shapes and finds the key-points
for shape deformation from a set of randomly sampled surface points. Chen et
al. [24] present an unsupervised approach that computes key-points from the
object’s point cloud to represent good abstraction and approximation of the input
3D shape. This approach encodes local features using PointNet++ and uses them
for producing a set of ordered 3D key-points. You et al. [27] present a method
that uses geodesic consistency loss for producing dense semantic embeddings.
Sun et al. present an unsupervised approach for object parts decomposition
using key-points estimation [31]. Their network is trained to compute K semantic
correspondence key-points by feeding two randomly rotated versions of an object
in the form of point clouds. The SK-Net proposed in [25] generates random
spatial key-points in 3D space and converges them to an object’s point cloud by
learning geometric features. Unlike the other approaches, the spatial key-points
are not a part of the object’s point cloud.

Other works have focused on depth images and/or RGB. Georgakis et al.
present an approach that uses RGB and depth images to compute object 3D
pose by matching predicted key-points to the corresponding CAD model [26]. He
et al. present a point-wise 3D key-points voting network that uses key-points for
calculating object pose in six Degrees of Freedom (6DoF) [28]. They train the
network using RGBD images and predict key-points used by the least-squares
fitting method for estimating the object’s 6D pose. Another RGBD images based
approach is presented in [29] that uses estimated 3D key-points for tracking an
object’s pose. Although their network does not require 3D shapes during training,
they are however, required test objects that are relatively similar to those used as
training samples [30]. Barabanau et al. [32] present an approach that estimates
2D key-points from an RGB image and transforms these key-points to a 3D model
of an object taken from a predefined set of 5 CAD templates only. The intrinsic
camera parameters are known. Lu et al. present an approach that uses key-
points for finding the pose of a robotic arm [33]. Initially, key-points are sampled
on the kinematic chain and are filtered in order to select optimal ones using
RANSAC [34]. A similar approach that finds semantic correspondence between
two images using both appearance and geometry reasoning by incorporating 2D
key-points is presented by Han et al. in [35]. The approach uses these semantic
correspondences for producing a warped version of two images. Suwajanakorn
et al. compute 3D key-points in an unsupervised way by using two views of
an object in different poses and knowledge of the object category [1]. During
inference, they use single-view RGB images. However, their estimates are in the
form of 2D pixels and depths. In comparison, we present a supervised approach
to estimate key-points in 3D space from a single-view RGB image.
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Fig. 2: The proposed architecture. An RGB image is fed to a feature extractor
to produce object features that are up-sampled in order to achieve a Pixel-wise
Representation (PWR). Finally, a Multilayer Perceptron (MLP) is added that
uses PWR for estimating 21 key-points in 3D space along with confidence scores.

3 Methodology

Given an RGB image, our work aims at estimating an ordered list of 3D key-points
that are semantically and geometrically consistent across different instances of
an object category. For this, an end-to-end approach is proposed that extracts an
object’s features from an image, computes Pixel-wise Representation (PWR) and
uses the representation for estimation of 3D key-points along with confidence
scores. The architecture of the approach is illustrated in Fig. 2.

The presented approach is based on three modules. The first module (feature
extractor) takes an RGB image as input and produces feature vectors. These
extracted features are converted to PWR in the second module. The PWR has
the same width and height as the input image. However, instead of representing
the RGB value, every pixel represents a feature for the corresponding pixel of the
input image. The third module contains a Multilayer Perceptron (MLP) based
on four linear layers. The PWR features are flattened to a 1D tensor before
feeding to the MLP. The MLP uses them for estimating the 21 key-points. For
every key-point, a position in 3D space [x, y, z] and a confidence score (from 0
to 1) is computed. The confidence score reflects how confident the network is
that the key-point exists for the object. If such a value is greater than 0.5, it
means that the predicted key-point exists for the object, and it is considered as a
valid key-point. Otherwise, it is discarded. In this way, the network separates an
object’s valid key-points from the predicted 21 key-points. So, the total number
of valid key-points could be different for different shapes of objects.

3.1 Training loss

The network is trained separately for every category (as followed in literature) as
well as jointly for all the categories. We found that the results with both methods
are approx. the same. So, we report the results of a network trained jointly for all
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the categories. The network minimizes five losses: 3D position loss, 2D projection
loss, separation loss, shape consistency loss and the confidence score loss. The
3D position loss (Lpos) measures how accurate the 3D position corresponding
to the predicted key-point is, w.r.t. the ground truth. For this we compute Mean
Square Error (MSE) between 3D positions of predicted P = {pi|i = 1, ..., Np}
and ground truth Q = {qi|i = 1, ..., Nq} key-points as:

Lpos =
1

Nq

Nq∑
i=1

∥∥pi − qi
∥∥2
2
, (1)

where Nq is the total number of ground truth key-points, which could be up to
21. We skip the extra predicted key-points that are not valid for an object (w.r.t.
ground truth). In order to predict a more accurate position of the key-points, we
also compute loss in 2D space. To do so, both the valid estimated and ground
truth key-points are transformed from 3D to 2D pixel coordinates using the
known transformation T (camera intrinsic and extrinsic) [1]. The 2D projection
loss (Lproj) is computed by taking the Mean Absolute Error (MAE) between
estimated and ground truth 2D pixels as:

pi = [xpi
, ypi

, zpi
]⊤, qi = [x̄qi , ȳqi , z̄qi ]

⊤

[ui, vi]
⊤ = T (pi), [ūi, v̄i]

⊤ = T (qi)

LProj =
1

3Nq

Nq∑
i=1

∥∥∥[ui, vi]
⊤ − [ūi, v̄i]

⊤
∥∥∥
1
,

(2)

where 1/3 is a scaling factor to balance the effect of the projection loss. We
consider a separation loss (Lsep) that ensures that no more than one key-point
can exist at the same 3D location. The loss penalizes two predicted key-points
that are closer than hyperparameter δ2 (0.05). It is calculated as:

Lsep =
1

Nq
2

Nq∑
i=1

Nq∑
j ̸=i

max(0, δ2 −
∥∥pi − pj

∥∥2
2
), (3)

where, pi and pj represent the ith and jth predicted key-point, respectively.
The point clouds based approaches predict key-points from the input point

clouds and hence they do not consider object’s surrounding. In contrast, an image
based approach can predict 3D key-points in object’s surroundings. To prevent
this issue, a shape consistency loss (Lshape) is included that forces the network
to predict key-points closer to the surface of the object. It can be described as:

di =
∥∥pi − kNN (pi,PC)

∥∥
2
,

Lshape =
min(1,M)

max(1,M)

Nq∑
i=1

di, if di > γ,
(4)

where, kNN() is a function that finds the nearest neighbor of a valid predicted
key-point pi from a point cloud PC of an object which is available during the
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training time. The di is the distance of a key-point pi from its nearest neighbor
point while M is a count of considered distances that are greater than γ (0.05).
Lshape is an average of the considered distances.

During training, we use ground truth information for the separation of valid
key-points (from the predicted 21 key-points) for calculating the losses. However,
during inference, to identify these valid key-points without ground truth infor-
mation, a confidence score is required for every predicted key-point. For that,
we compute a confidence score loss (Lconf ) by comparing predicted scores
(CP = {cpi | i = 1, ..., N}) with ground truth scores (CQ = {cqi | i = 1, ..., N}) as;

Lconf =
1

N

N∑
i=1

∥∥cpi − cqi
∥∥, (5)

where cpi could range from 0 to 1, whereas, cqi could be either 1 or 0. The 1 and
0 represent if the key-point exists (is valid) for the object or not, respectively.
N is the total number of predicted key-points, which is 21. Moreover, we pad
zeros at the end of the ground truth score vector if it contains less than N scores.
Where the zeros represent invalid key-points. The overall loss can be defined as:

Loverall = Lpos + Lproj + Lsep + Lshape + Lconf . (6)

3.2 Inference

During inference, the network predicts 21 3D key-points along with their confi-
dence scores from a single image. All the key-points having a confidence score
greater than 0.5 are selected as valid key-points. The rest of the key-points are
discarded. For better visualization, the predicted valid key-points are illustrated
on the original point cloud of the object (i.e. Fig. 3).

3.3 Implementation details

The feature extractor module is based on ResNet-18 that is pre-trained on
ImageNet dataset [36]. We discard its last two layers to extract features of
dimensions 512x5x5. The network is implemented in PyTorch and trained with
Adam optimizer. The learning rate is 10−3, and the batch size is 512.

4 Experiments

The section presents an arrangement of the dataset, explains metrics selected for
performance evaluation and compares the results with SOTA approaches.

4.1 Dataset

As extensively evaluated in previous approaches, we use KeypointNet dataset [3]
to analyse the performance of our approach. It contains 8329 3D models, corre-
sponding point clouds, and 83231 key-points of 16 object categories. However, it
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does not contain images along with camera parameters that are required in our
experiments. We render (RGB/RGBA) images in 24 different views by placing
the object’s 3D model at the origin of the reference frame and the virtual cameras
at different locations, pointed towards the origin. During training, original point
clouds along with the ground truth key-points are transformed w.r.t. the objects
view in the input images. It allows the proposed approach to estimate key-points
in different poses. We use the data split provided by KeypointNet.

4.2 Performance measurement

We compare our results with those of KP-Net [1]. Unlike the existing point cloud
based methods [3, 22–25], their approach (in inference) uses single image and
estimates 3D key-points (pixel [u, v] and depth [d]). It estimates 3D key-points for
two views of an object. The key-points are then used for finding a pose (rotation
matrix) between the object views. The estimated pose is compared with the
ground truth pose by computing an angular distance error.

We follow the same procedure and estimate key-points for two views (A
and B) of an object using our approach. However, for evaluation, we use these
key-points in two different methods. The first method is exactly the same as
KP-Net, where we compute relative rotation matrix (R̄) between object views
using Procrustes analysis and then calculate the angular distance error (Erot mat)
between computed and ground truth relative rotation matrix (R) as:

Erot mat = 2 arcsin

(
1

2
√
2
||R̄−R||F

)
. (7)

As a second evaluation, we transform the estimated key-points of view A
(A = {ai|i = 1, ..., N}) using the predicted (R̄) and the ground truth (R) rotation
matrix and call them Ap = {api|i = 1, ..., N} and Aq = {aqi|i = 1, ..., N},
respectively. Generally, both the key-points Ap and Aq should lie on the same
positions as the key-points of view B (see Fig. 3). Every key-point api/aqi of
Ap/Aq is considered as a vector from the origin (api,aqi). An angular distance
error (E3D pos) between Ap and Aq is computed using vector dot product as:

E3D pos =
1

N

N∑
i=1

arccos

(
api · aqi

|api| |aqi|

)
, (8)

where N is total number of estimated valid key-points. For a fair comparison
with the KP-Net, we consider the first evaluation. Nevertheless, for validation on
other categories, results from both evaluations are presented.

4.3 Results and Analysis

The proposed approach is evaluated using white background images of 13 different
categories – 10 more than the KP-Net [1]. Two views of an object are passed to
the network for estimating 3D key-points for every view. The Procrustes analysis
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Table 1: Error in pose estimation between two views of an object. Angular
distance error is computed in degrees between; 1) estimated and ground truth
rotation matrices (Eq. 7) and 2) 3D positions (Eq. 8) of the predicted key-points
in two views. MSE is computed between predicted and ground truth key-points.

Category
Error b/w Rot.

matrices
Error b/w key-points

3D positions
MSE b/w predicted &
ground truth key-points

Mean Median Mean Median Mean STD

Airplane 6.581 3.145 5.963 2.565 0.006 0.017
Car 6.761 2.980 5.316 2.456 0.008 0.040
Chair 13.562 5.017 11.247 4.566 0.015 0.049
Table 23.919 3.635 18.079 2.975 0.053 0.159
Vessel 14.652 4.392 11.655 3.478 0.026 0.075
Bed 28.598 12.422 25.332 9.049 0.094 0.163
Cap 16.904 8.193 13.634 6.261 0.031 0.063
Helmet 26.947 16.058 23.504 15.243 0.062 0.076
Knife 25.330 13.006 20.599 12.490 0.008 0.006
Motorcycle 9.467 3.226 6.490 2.507 0.011 0.045
Guitar 19.559 5.289 7.247 2.926 0.003 0.006
Mug 18.470 9.135 10.320 5.942 0.026 0.056
Bottle 17.118 14.854 14.674 12.013 0.023 0.027

Average 16.962 7.690 12.822 6.190 0.028 0.060

is used that utilizes the estimated key-points to compute a pose (rotation matrix)
between the views. The error in the estimated pose is computed using both the
evaluations (Eq. 7 and Eq. 8). The results are depicted in Tab. 1. The last two
columns present the mean and Standard Deviation (STD) of the MSE between
predicted and ground truth 3D key-points. The error is comparatively high for
some categories. It is due to the structural variation (single/bunk beds, tables),
different key-points for similar object shapes (helmet, knife, etc.), and differences
in center of rotation and the center of mass of the object (i.e., mug). Qualitative
results are given in supplementary material (Sup. Fig. 1).

To compare our results with the KP-Net, we consider the same three categories
(cars, airplanes, and chairs) as reported in [1]. For the evaluation, we compute
the angular distance error between the estimated and ground truth pose of two
views of an object (see Eq. 7). The error is depicted in Tab. 2. In [1], the results
are presented for four different versions; 1) supervised KP-Net that learns from
ground truth 2D pixels and corresponding depths, 2) supervised KP-Net with a
pretrained Orientation Network (O-Net) that provides an object’s orientation
information, 3) KP-Net (unsupervised) with O-Net, and 4) KP-Net without
O-Net. It is reported in [1] that the KP-Net without O-Net performs overall
well. The first four rows of the Tab. 2 present results of the KP-Net versions. In
comparison to those, our results are more accurate.

Qualitative results are illustrated in Fig. 3. Columns (a) and (b) show two
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Table 2: Error in pose estimation between two views of the same object. Mean and
median angular distance errors are calculated (in degrees) between ground truth
rotation and the rotation computed by Procrustes estimates between predicted
key-points of the two views. Results of the baselines (first four rows) are the
same as reported in [1]. All the results are produced for transparent images.

Method
Car Airplane Chair

Mean Median Mean Median Mean Median

Supervised KP-Net 16.268 5.583 18.350 7.168 21.882 8.771
Supervised KP-Net with O-Net 13.961 4.475 17.800 6.802 20.502 8.261
KP-Net with O-Net 13.500 4.418 18.561 6.407 14.238 5.607
KP-Net 11.310 3.372 17.330 5.721 14.572 5.420

Ours 5.190 2.073 3.257 2.053 10.732 4.096

(a) View A (b) View B (c) KP A (d) KP B (e) KP Aest (f) KP Agt

Fig. 3: Computing pose between two views (a) and (b) of an object. The corre-
sponding estimated key-points are shown on the original point clouds in (c) and
(d). The key-points of view A (c) are transformed to view B using estimated and
ground truth rotation matrix as illustrated in (e) and (f), respectively.

views of the same object. The corresponding estimated key-points are presented
in columns (c) and (d), respectively. Finally, the key-points (and point clouds) of
view A after transformation using estimated (Aest) and the ground truth (Agt)
rotation are illustrated in (e) and (f). It can be visualized that the pose of the
transformed key-points (e and f) is the same as the pose of key-points of view B
(d). The experiment highlights that; 1) the estimated key-points can be used for
computing a pose between two views, 2) the key-points are in semantical order,
which is independent of the object view, and 3) the network can predict key-point
of the occluded part of the object (i.e., back legs of the chair). Furthermore, we
present another experiment that highlights the significance of the confidence
score. We compare the predicted valid key-points (to whom the network assigns
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Table 3: Comparison of the key-points predicted as valid by our network based
on confidence scores (Pred.) with the key-points selected using ground truths
(GT). The pose estimation error in two views of an object is approx. the same in
both the cases; either the Pred. or GT key-points are used. Mean and SE of the
pose error (calculated in both the methods using (a) rotation matrices (Eq. 7)
and (b) key-points 3D positions (Eq. 8)) is given for RGB and RGBA images.

Category Metric
Error b/w rotation matrices Error b/w 3D positions

RGB RGBA RGB RGBA
Pred. GT Pred. GT Pred. GT Pred. GT

Airplane
Mean 6.581 6.552 3.257 3.267 5.963 5.974 2.805 2.797
SE 0.195 0.194 0.075 0.076 0.003 0.003 0.001 0.001

Car
Mean 6.761 6.764 5.190 5.187 5.316 5.334 4.040 4.057
SE 0.318 0.318 0.277 0.280 0.004 0.004 0.004 0.004

Chair
Mean 13.56 13.56 10.73 10.71 11.25 11.25 7.53 7.54
SE 0.340 0.340 0.330 0.327 0.004 0.004 0.006 0.004

confidence greater than 0.5) with the key-points known to be present because of
ground truths. The results are approx. the same in both cases, which validates
that the confidence score helps the network in classifying the valid key-points for
every object. The results are given in Tab. 3 that show mean angular distance
error and the Standard Error (SE) which is calculated as σ/

√
n, where σ is the

standard deviation of n angular distance errors. Additional results, including
evaluation for realistic images, can be found in the supplementary material.

In a nutshell, it can be inferred that if a network could not estimate the
confidence scores, it should predict fixed numbers of key-points as followed by
the existing approaches. Otherwise, It may not be possible for the network to
separate valid key-points from the total predicted N (21) key-points. Moreover,
the confidence score allows jointly training a network for several categories with a
different number of key-points. Otherwise, either the network can be trained for
a single category, or the total key-points should be fixed for all the categories.

5 Conclusions

The paper presents an end-to-end solution for 3D key-points estimation from a
single-view RGB image. The proposed approach extracts object features from an
image, computes pixel-wise features by upsampling, and uses them for estimating
3D key-points along with confidence scores that reflect validity of the key-points.
It enables the network to predict a different number of key-points based on the
object shape. The key-points are estimated in an ordered semantic list, which
increases its significance. Moreover, the network can be trained together for all
the classes. The approach is evaluated by computing the pose between two views
of an object. Our results are more accurate than those reported by KP-Net [1].
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